Search results for "Brown adipose tissue"
showing 10 items of 13 documents
NT3/TrkC Pathway Modulates the Expression of UCP-1 and Adipocyte Size in Human and Rodent Adipose Tissue
2021
Neurotrophin-3 (NT3), through activation of its tropomyosin-related kinase receptor C (TrkC), modulates neuronal survival and neural stem cell differentiation. It is widely distributed in peripheral tissues (especially vessels and pancreas) and this ubiquitous pattern suggests a role for NT3, outside the nervous system and related to metabolic functions. The presence of the NT3/TrkC pathway in the adipose tissue (AT) has never been investigated. Present work studies in human and murine adipose tissue (AT) the presence of elements of the NT3/TrkC pathway and its role on lipolysis and adipocyte differentiation. qRT-PCR and immunoblot indicate that NT3 (encoded by NTF3) was present in human re…
Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages.
2017
Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1- KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1-KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot-specific cell…
Expression of Putative Fatty Acid Transporter Genes Are Regulated by Peroxisome Proliferator-activated Receptor α and γ Activators in a Tissue- and I…
1998
Regulation of gene expression of three putative long-chain fatty acid transport proteins, fatty acid translocase (FAT), mitochondrial aspartate aminotransferase (mAspAT), and fatty acid transport protein (FATP), by drugs that activate peroxisome proliferator-activated receptor (PPAR) alpha and gamma were studied using normal and obese mice and rat hepatoma cells. FAT mRNA was induced in liver and intestine of normal mice and in hepatoma cells to various extents only by PPARalpha-activating drugs. FATP mRNA was similarly induced in liver, but to a lesser extent in intestine. The induction time course in the liver was slower for FAT and FATP mRNA than that of an mRNA encoding a peroxisomal en…
Yeast cultures with UCP1 uncoupling activity as a heating device
2009
7 páginas, 5 figuras, 3 tablas -- PAGS nros. 300-306
Peroxisome proliferator-activated receptors as regulators of lipid metabolism; tissue differential expression in adipose tissues during cold acclimat…
2004
Brown (BAT) and white (WAT) adipose tissues play a key role in the body energy balance orchestrated by the central nervous system. Hibernators have developed a seasonal obesity to respond to inhospitable environment. Jerboa is one of the deep hibernator originated from sub-desert highlands. Thus, this animal represents an excellent model to study cold adaptation mechanism. We report that the adipogenic factor PPARgamma exhibits a differential expression between BAT and WAT at mRNA level. A specific induction was only seen in WAT of pre-hibernating jerboa. Interestingly, PPAR beta/delta is specifically induced in BAT and brain of pre-hibernating jerboa, highlighting for the first time the po…
The neural feedback loop between the brain and adipose tissues
2009
Communication également publiée dans le livre "Adipose tissue development: from animal models to clinical conditions" (ISBN 978-3-8055-9450-9) de C. Levy-Marchal et L. Pénicaud (eds); There are more and more data supporting the importance of nervous regulation of both white and brown adipose tissue mass. This short paper will review the different physiological parameters which are regulated such as metabolism (lipolysis and thermogeneis), secretory activity (leptin and other adipokines) but also to plasticity of adipose tissues (proliferation differentiation and apoptosis). The sensory innervation of white adipose issue and its putative role will be also described. Altogether these results …
Changes of peroxisomal fatty acid metabolism during cold acclimatization in hibernating jerboa (Jaculus orientalis)
2003
Abstract Jerboa (Jaculus orientalis) is a deep hibernator originating from sub-desert highlands and represents an excellent model to help to understand the incidence of seasonal variations of food intake and of body as well as environmental temperatures on lipid metabolism. In jerboa, hibernation processes are characterized by changes in the size of mitochondria, the number of peroxisomes in liver and in the expression of enzymes linked to fatty acid metabolism. In liver and kidney, cold acclimatization shows an opposite effect on the activities of the mitochondrial acyl-CoA dehydrogenase (–50%) and the peroxisomal acyl-CoA oxidase (AOX) (+50%), while in brown and white adipose tissues, bot…
Myoglobin, expressed in brown adipose tissue of mice, regulates the content and activity of mitochondria and lipid droplets
2021
Abstract The identification of novel physiological regulators that stimulate energy expenditure through brown adipose tissue (BAT) activity in substrate catalysis is of utmost importance to understand and treat metabolic diseases. Myoglobin (MB), known to store or transport oxygen in heart and skeletal muscles, has recently been found to bind fatty acids with physiological constants in its oxygenated form (i.e., MBO2). Here, we investigated the in vivo effect of MB expression on BAT activity. In particular, we studied mitochondrial function and lipid metabolism as essential determinants of energy expenditure in this tissue. We show in a MB-null (MBko) mouse model that MB expression in BAT i…
Adipose tissue in sleep apnea: effects of hypoxia and inflammation
2014
Empagliflozin Induces White Adipocyte Browning and Modulates Mitochondrial Dynamics in KK Cg-Ay/J Mice and Mouse Adipocytes
2021
Background: White adipose tissue (WAT) browning is a promising target for obesity prevention and treatment. Empagliflozin has emerged as an agent with weight-loss potential in clinical and in vivo studies, but the mechanisms underlying its effect are not fully understood. Here, we investigated whether empagliflozin could induce WAT browning and mitochondrial alterations in KK Cg-Ay/J (KKAy) mice, and explored the mechanisms of its effects.Methods: Eight-week-old male KKAy mice were administered empagliflozin or saline for 8 weeks and compared with control C57BL/6J mice. Mature 3T3-L1 adipocytes were treated in the presence or absence of empagliflozin. Mitochondrial biosynthesis, dynamics, a…